Blog Archives

Make your mobile device live up to its true potential: As a data collection tool

Leaf measurements are often critical in plant physiological and ecological studies, but traditional methods have been time consuming and sometimes destructive to plant samples. Researchers at the University of California, Davis, have developed Easy Leaf Area — a free software written in an open-source programming language — to allow users to accurately measure leaf area from digital images in seconds.

“It has always been a challenge to measure leaf surface area without damaging the plants or spending long hours in the lab, so I decided to attempt to write software to automatically measure leaf and scale area from smartphone images,” explains Hsien Ming Easlon, a researcher at UC Davis and one of the developers of Easy Leaf Area. “Leaf area measurements are essential for estimating crop yields, water usage, nutrient absorption, plant competition, and many other aspects of growth.”

The digital images he uses are taken with the Apple IPhone 4, but any current smartphone camera or digital camera will do. Once the images are uploaded to a computer, Easy Leaf Area can process hundreds of images and save the results to a spreadsheet-ready CSV file. The Windows executable software is free to download and can be modified to suit specific experimental requirements. A full report including links to additional resources is available in a recent issue of Applications in Plant Sciences.

Easlon recalls, “Our lab started using digital cameras when I was a graduate student. We figured out how to use Photoshop to measure areas in digital images, but this method still required one to five minutes of human input per image.”

Five minutes per image may not seem like a long time, but multiply that by hundreds of plants — a normal sample size — and those minutes add up fast. By automating data analysis, researchers can save countless hours of manual labor, improve the accuracy and consistency of their results, and reduce potential damages to their plant samples.

Easlon and his team developed Easy Leaf Area using Arabidopsis plants, and also tested Easy Leaf Area on photographs of field-grown tomatoes and wheat, and photographs and scans of detached leaves of a common tree poppy, California redwood, chaparral currant, Jeffrey pine, and Valley oak. Manual adjustments to the automatic algorithm can be saved for different plants and field conditions, making this a practical tool for researchers in many plant science fields.

Easlon’s next step is to develop a mobile version so that leaf area measurements can be made on the fly without a PC. He also plans to add handwriting recognition or barcode reading to the software. This will automatically interpret labeled plant stakes and assign the proper file names to each image.

“Most researchers don’t have the time or knowledge to develop software for themselves, so scientific use of smartphones is primarily limited to built-in features. The processing power, connectivity, built-in sensors, storage capacity, and low price give smartphones great potential to replace many single-purpose devices for scientific data collection,” explains Easlon.

Calculating plant surface area could soon be as easy as using Instagram.

Story Source:

The above story is based on materials provided by American Journal of Botany. Note: Materials may be edited for content and length.

Agriculture and Food News — ScienceDaily

Walmart tests new ad match tool

TGF-FruitImageWalmart said it is pleased with preliminary test results of “Savings Catcher,” a new ad match program.


CONNECT WITH SN ON TWITTER

Follow @SN_News for updates throughout the day.


“Results are every encouraging,” Andy Murray, Walmart’s SVP, creative, said in a presentation at The Path to Purchase Institute’s Shopper Marketing Summit. “We’re seeing increased loyalty.”

Customers who sign up via walmart.com/savingscatcher submit their receipt number either online or on a mobile device. Walmart uses a third party firm that searches competitor print and digital ads. If another store is advertising a lower price, the customer will get the difference on a Walmart gift card.

Savings Catcher can be used on in-store purchases of most groceries, paper goods, household cleaning products and health and beauty care items.

It is being tested in seven cities: Atlanta, Charlotte, Dallas, Huntsville, Ala.; Lexington, Ky.; Minneapolis and San Diego.

Supermarket News

Web Tool Successfully Measures Farms’ Water Footprint

A new University of Florida web-based tool worked well during its trial run to measure water consumption at farms in four Southern states, according to a study published this month.

The system measures the so-called “water footprint” of a farm. In the broader sense, water footprints account for the amount of water used to grow or create almost everything we eat, drink, wear or otherwise use.

Researchers at UF’s Institute of Food and Agricultural Sciences introduced their WaterFootprint tool in the March issue of the journal Agricultural Systems, after using it to calculate water consumption at farms in Florida, Georgia, Alabama and Texas. The WaterFootprint is part of the AgroClimate system, developed by Clyde Fraisse, a UF associate professor of agricultural and biological engineering. AgroClimate is a web resource, aimed primarily at agricultural producers, that includes interactive tools and data for reducing agricultural risks.

WaterFootprint, developed primarily by Daniel Dourte, a research associate in agricultural and biological engineering, estimates water use in crop production across the U.S. WaterFootprint looks at a farm in a specific year or growing season and gives you its water footprint, Dourte said. With UF’s WaterFootprint system, users provide their location by ZIP code, the crop, planting and harvesting dates, yield, soil type, tillage and water management.

The tool also retrieves historical weather data and uses it to estimate the blue and green water footprints of crop production, Dourte said. Water footprints separate water use into green, which is rainfall; blue, from a freshwater resource; and gray, an accounting of water quality, after it’s been polluted.

Water footprints can be viewed at the farm level or globally. For instance, if irrigation water is used to grow crops, it is essentially exported, Dourte said.

Once products are shipped overseas, the water used to grow the commodity goes with it, and it may not return for a long time — if ever, Dourte said. That’s a problem if the crop is grown in a region where water is scarce, he said.

But there’s often a tradeoff, he said. Global food trade saves billions of gallons of water each year, as food is exported from humid, temperate places to drier locales that would have used much more water to grow crops, Dourte said.

“The U.S. is a big agricultural producer. Products are exported and along with them, water goes to other countries,” he said.

For example, if you’re growing soybeans, you’re indirectly sending the water that was used to grow the crop. That amounts to about 270 gallons per pound of soybeans, Dourte said. In addition to soybeans, coffee beans and shirts, if made from cotton, consume lots of water from the growing process to processing to shipping — with most of that water consumption resulting from evaporation and transpiration during crop growth, he said. But understanding the type of water resource being consumed, whether it’s from rainfall or irrigation, makes all the difference in assessing water resource sustainability. Dourte co-authored the study with Fraisse and Oxana Uryasev, a UF research associate in agricultural and biological engineering.

The WaterFootprint tool can help not just growers, but world water managers as well, he said.

“We think this farm-specific, time-specific water footprinting tool is a unique resource that could be used by resource managers and educators to consider water resource sustainability in the context of agricultural production,” Dourte said. “We usually think of water management locally and regionally. But when you’re accounting for the water footprint of agricultural products, it allows you to see the global nature of that water.” UF’s WaterFootprint calculator can be found at http://agroclimate.org/tools/Water-Footprint/.

Agriculture and Food News — ScienceDaily